Chronic nicotine treatment differentially regulates striatal α6α4β2* and α6(nonα4)β2* nAChR expression and function
نویسندگان
چکیده
asterisk indicates the possible presence of other nicotinic subunits in the receptor complex. ABSTRACT Nicotine treatment has long been associated with alterations in α4β2* nicotinic acetylcholine receptor (nAChR) expression that modify dopaminergic function. However, the influence of chronic nicotine treatment on the α6β2* nAChR, a subtype specifically localized on dopaminergic neurons, is less clear. Here we used voltammetry, as well as receptor binding studies, to identify the effects of nicotine on striatal α6β2* nAChR function and expression. Chronic nicotine via drinking water enhanced non-burst and burst endogenous dopamine release from rat striatal slices. In control animals, α6β2* nAChR blockade with α-conotoxinMII (α-CtxMII) decreased release with non-burst stimulation but not with burst firing. These data in control animals suggest that varying stimulus frequencies differentially regulate α6β2* nAChR-evoked dopamine release. In contrast, in nicotine-treated rats, α6β2* nAChR blockade elicited a similar pattern of dopamine release with non-burst and burst firing. To elucidate the α6β2* nAChR subtypes altered with chronic nicotine treatment, we used the novel α-CtxMII analogue E11A, in combination with α4 nAChR knockout mice. 125 I-α-CtxMII competition studies in striatum of knockout mice showed that nicotine treatment decreased the α6α4β2* subtype, but increased the α6(nonα4)β2* nAChR population. These data indicate that α6β2* nAChR-evoked dopamine release in nicotine-treated rats is mediated by the α6(nonα4)β2* nAChR subtype, and suggest that the α6α4β2* nAChR and/or α4β2* nAChR contribute to the differential effect of higher frequency stimulation on dopamine release under control conditions. Thus, α6β2* nAChR subtypes may represent important targets for smoking cessation therapies and neurological disorders involving these receptors such as Parkinson's disease.
منابع مشابه
Striatal α5 nicotinic receptor subunit regulates dopamine transmission in dorsal striatum.
Polymorphisms in the gene for the α5 nicotinic acetylcholine receptor (nAChR) subunit are associated with vulnerability to nicotine addiction. However, the underlying normal functions of α5-containing nAChRs in the brain are poorly understood. Striatal dopamine (DA) transmission is critical to the acquisition and maintenance of drug addiction and is modulated strongly by nicotine acting at hete...
متن کاملNicotinic acetylcholine receptors (nAChRs) are expressed in Trpm5 positive taste receptor cells (TRCs)
Nicotine evokes chorda tympani (CT) taste nerve responses and an aversive behavior in Trpm5 knockout (KO) mice. The agonists and antagonists of nicotinic acetylcholine receptors (nAChRs) modulate neural and behavioral responses to nicotine in wildtype (WT) mice, Trpm5 KO mice and rats. This indicates that nicotine evokes bitter taste by activating a Trpm5-dependent pathway and a Trpm5-independe...
متن کاملCholinergic Modulation of Locomotion and Striatal Dopamine Release is Mediated by α6α4* Nicotinic Acetylcholine Receptors
Dopamine (DA) release in striatum is governed by firing rates of midbrain DA neurons, striatal cholinergic tone, and nicotinic ACh receptors (nAChRs) on DA presynaptic terminals. DA neurons selectively express α6* nAChRs, which show high ACh and nicotine sensitivity. To help identify nAChR subtypes that control DA transmission, we studied transgenic mice expressing hypersensitive α6L9′S* recept...
متن کاملLong-Term Nicotine Treatment Differentially Regulates Striatal 6 4 2* and 6(Non 4) 2* nAChR Expression and Function
Nicotine treatment has long been associated with alterations in 4 2* nicotinic acetylcholine receptor (nAChR) expression that modify dopaminergic function. However, the influence of longterm nicotine treatment on the 6 2* nAChR, a subtype specifically localized on dopaminergic neurons, is less clear. Here we used voltammetry, as well as receptor binding studies, to identify the effects of nicot...
متن کاملCharacterizing functional α6β2 nicotinic acetylcholine receptors in vitro: mutant β2 subunits improve membrane expression, and fluorescent proteins reveal responsive cells.
α6* nicotinic acetylcholine receptors (nAChRs) are highly expressed in mesostriatal and nigrostriatal dopaminergic systems, and participate in motor control, reward, and learning and memory. In vitro functional expression of α6* nAChRs is essential for full pharmacological characterization of these receptors and for drug screening, but has been challenging. We expressed eGFP-tagged-α6 and β2 nA...
متن کامل